Education:
- 1981, B.Sc. Biochemistry, Sussex University.
- 1984, Diploma of Chemistry, University of Thessaloniki
- 1990, Doctorate Diploma (PhD) in Biochemistry, University of Thessaloniki
- 1990-1995, Post-doctoral fellow, Cell Biology Program, EMBL, Heidelberg
- 1996-2000, Habilitation, Biochemie-Zentrum Heidelberg, Faculty of Medicine, University of Heidelberg.
Research Interests & Achievements:
- Molecular mechanisms of the cellular response to hypoxia with particular emphasis on the regulation and function of the Hypoxia-Inducible transcription Factor HIF-1.
- The involvement of HIF-1 in the regulation of metabolism and carcinogenesis in liver hepatocytes, development of novel anticancer agents.
- Iron homeostasis with emphasis on the regulation of the hepatic hormone hepcidin.
- Nucleo-cytoplasmic transport mechanisms with particular emphasis on the biogenesis, transport and aminoacylation of tRNA.
- Publication of 58 original research papers in peer-reviewed journals, 7 review articles and 3 book chapters (with total impact factor of 418, 2.620 citations and h-index: 28)
Selected publications
Mylonis I, Sembongi H, Befani C, Liakos P, Siniossoglou S and G. Simos (2012) Triglyceride accumulation under hypoxia involves HIF-1-dependent regulation of lipin 1. Journal of Cell Science 125, 3485.
Papadakis A, Paraskeva E, Peidis P, Muaddi H, Li S, Raptis L, Pantopoulos K, Simos G and A Koromilas (2010) eIF2α kinase PKR modulates the hypoxic response by Stat3-dependent transcriptional suppression of HIF-1α. Cancer Research 70, 7820.
Karanasios E and G Simos (2010) Building arks for tRNA: Structure and function of the Arc1p family of non-catalytic tRNA-binding proteins. FEBS Letters 584, 3842.
Kalousi A., Mylonis I., Politou A., Chachami G., Paraskeva E., and G. Simos (2010)Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. Journal of Cell Science 123, 2976-86.
Mylonis Ι., Lakka A., Tsakalof A. and G. Simos (2010). The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions.Biochemical and Biophysical Research Communications 398, 74-8.
Chachami G., Paraskeva E., Mingot J.-M., Braliou G.G., Görlich D. and G. Simos (2009) Transport of hypoxia-inducible factor HIF-1α into the nucleus involves importins 4 and 7. Biochemical and Biophysical Research Communications 390, 235-240.
Mylonis I., Chachami G., Paraskeva E. and G. Simos (2008) Atypical CRM1-dependent nuclear export signal mediates regulation of hypoxia-inducible factor-1alpha by MAPK. Journal of Biological Chemistry 283, 27620-27627.
Braliou G.G., Verga Falzacappa M.V., Chachami G., Casanovas G., Muckenthaler M.U. and G. Simos (2008) 2-Oxoglutarate-dependent oxygenases control hepcidin gene expression. Journal of Hepatology 48, 801-810.
Karanasios E., Boleti H., and G. Simos. (2008) Incorporation of the Arc1p tRNA-binding domain to the catalytic core of MetRS can functionally replace the yeast Arc1p/MetRS complex. Journal of Molecular Biology 381, 763-771.
Karanasios E., Simader H., Panayotou G., Suck D. and G. Simos. (2007) Molecular determinants of the yeast Arc1p/aminoacyl-tRNA synthetase complex assembly. Journal of Molecular Biology 374, 1077-1090.
Mylonis I., Chachami G., Samiotaki M., Panayotou G., Paraskeva E., Kalousi A., Georgatsou E., Bonanou S. and G. Simos (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of Hypoxia-Inducible Factor 1α. Journal of Biological Chemistry. 281, 33095-33106.
Braliou G.G., Venieris E., Kalousi A. and G. Simos (2006) Reconstitution of human hypoxia inducible factor HIF-1 in yeast cells: a simple in vivo system to identify and characterize HIF-1α effectors. Biochemical and Biophysical Research Communications 346, 1289-1296.
Galani K., Hurt E. and G. Simos (2005). The tRNA aminoacylation co-factor Arc1p is excluded from the nucleus by an Xpo1p-dependent mechanism. FEBS Letters 579, 969-975.
Galani K., Grosshans H., Deinert K., Hurt E.C. and G. Simos (2001). The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 20, 6889-6898.
Grosshans H., Deinert K., Hurt E. and G. Simos (2001). Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA and Xpo1p-mediated export. Journal of Cell Biolοgy 153, 745-761.
Grosshans H., Hurt E. and G. Simos (2000). An aminoacylation-dependent tRNA export pathway in yeast. Genes & Development 14, 830-840.
Hellmuth K., Lau D., Bischoff R., Künzler M., Hurt E.C., and G. Simos (1998). Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Molecular and Cellular Biology 18, 6374-6386.
Simos G., Sauer A., Fasiolo F., and E.C. Hurt (1998).A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Molecular Cell 1, 235-242.
Short CV (.pdf)